Institute for Digital Biology

0101...ATGC

Welcome to GO: a User's Perspective

Fiona McCarthy*, Nan Wang*, Susan Bridges** and Shane Burgess**

FAQs

- 1. "How can I use the GO to model my functional genomics dataset?"
- 2. "Not all of my genes/proteins have GO annotation, how do I get more?"
- 3. "Why isn't my species represented in the GO?"

FAQs

1. "How can I use the GO to model my functional genomics dataset?"

Case study: chicken proteomics.

2. "Not all of my genes/proteins have GO annotation, how do I get more?"

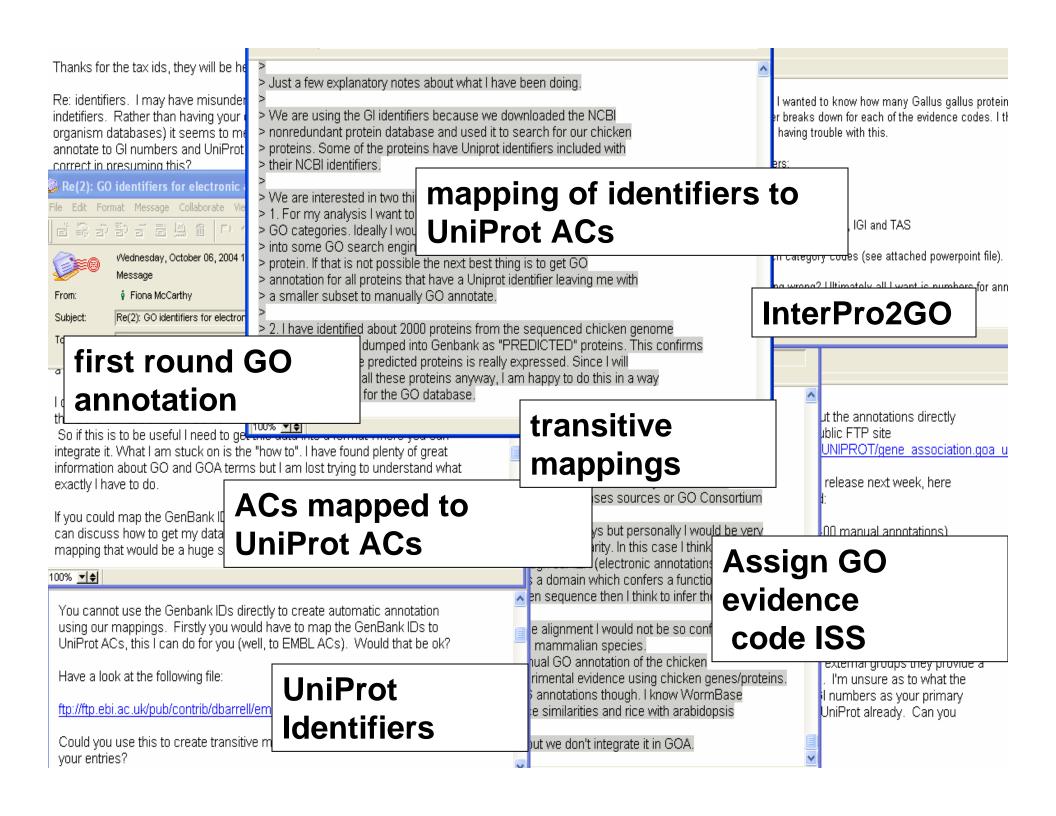
Case study: chicken microarrays.

3. "Why isn't my species represented in the GO?"

Your species and the GO annotation effort.

Case Study: Chicken Proteomics

FAQ: "How can I use the GO to model my functional genomics dataset?"

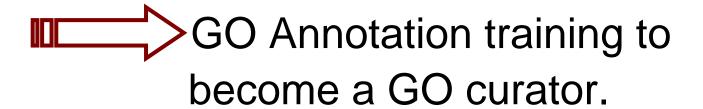

- 1. Why I started using the GO.
- 2. Why and how I became a GO annotator.

	Reference		Accession	Peptides (HitS	core
#1		al d 5)	113575	255 (244 6 1	2508.355
#2	We identified 3,602 chicken			94 (84 4 4 2	904.4369
#3	·	Fibrinop		40 (37 1 1 0	386.3528
#4	B cell and stroma proteins.	oumin; H		34 (30 3 0 1	328.2493
#5	·			28 (0 22 3 2	204.7303
#6	C Chain C, Crystal Structure Of Native Chicken Fibrinogen			15 (15 0 0 0	150.3351
#7	l50711 complement C3 precursor - chicken			11 (9 2 0 0 0	106.3393
#8	TTHY_CHICK Transthyretin precursor (Prealbumin) (TBPA)			10 (10 0 0 0	100.3767
#9	TIM2_CHICK Metalloproteinase inhibitor 2 precursor (TIMP-2) (Tis	ssue inhib		13 (0 11 1 0	96.44643
#10	AAA6469			10 (9 0 1 0 0	96.43947
#11	MYH9_CHICK Myosin heavy chain, nonmuscle (Cellular myosin	heavy cha		14 (5 0 5 3 1	94.4
#12	S19188 myosin-V - chicken			13 (4 3 3 2 1	92.33327
#13	FIBB_CHICK Fibrinogen beta chain precursor [Contains: Fibrinop	-		9 (8 1 0 0 0)	88.22259
#14	A Chain A, Crystal Structure Of Wild Type Turkey Delta 1 Crysta	Ilin (Eye	14278427	12 (0 2 10 0	76.49026
#15	type I polyketide synthase AVES 2 [Streptomyces avermitilis MA	\-4680]	29827480	8 (6 1 0 1 0)	72.40443
#16	Hyperion protein, 419 kD isoform [Gallus gallus] 0		4582571	11 (0 5 3 3 0	70.23222
#17	vitronectin [Gallus gallus] ovirus 3]		1922282	7 (7 0 0 0 0)	70.21583
#18	CA36_CHICK Collagen alpha 3(VI) chain precursor		1345652	10 (3 2 3 1 1	70.21163
#19	paired-type homeobox Atx [Gallus gallus] I beta su		18252581	11 (0 4 5 1 1	68.6834
#20	l51298 transforming protein sno-N - chicken		2147397	7 (6 1 0 0 0)	68.24525
#21	TP2A_CHICK DNA topoisomerase II, alpha isozyme		13959708	7 (5 2 0 0 0)	66.27445
#22	ITA6_CHICK Integrin alpha-6 precursor (VLA-6)		124948	12 (0 5 1 4 2	66.25118
#23	glucose regulated thiol oxidoreductase protein precursor [Gallus	gallus]	22651801	11 (1 3 4 0 3	64.65224
#24	spectrin alpha chain [Gallus gallus] rsor			9 (3 2 1 2 1)	62.33337
#25	ATP-binding cassette transporter 1 [Gallus gallus]		18028983	9 (2 3 2 1 1)	62.31025
#26	cone-type transducin alpha subunit [Gallus gallus]			8 (1 6 0 1 0)	62.15586
#27	condensin complex subunit [Gallus gallus] s] hick			12 (0 2 4 4 2	60.69801
#28	BA2B_CHICK Bromodomain adjacent to zinc finger domain 2B (E	Extracellu	22653663	8 (3 1 3 1 0)	60.14009
#29	ryanodine receptor type 3 [Gallus gallus]		1212912	9 (0 5 2 1 1)	58.38206
#30	type I polyketide synthase AVES 4 [Streptomyces avermitilis MA	\-4680]		7 (2 4 1 0 0)	58.30331
#31	structural muscle protein titin [Gallus gallus] n k			9 (0 5 2 0 2)	56.29744
#32	breast cancer susceptibility protein [Gallus gallus]			7 (4 1 1 0 1)	56.23917
#33	FAS_CHICK Fatty acid synthase [Includes: EC 2.3.1.38; EC 2.3	.1.39; EC	1345958	8 (1 4 1 1 1)	54.35799

	Reference	Accession	Peptides (HitS	core
#1	ALBU_CHICK Serum albumin precursor (Alpha-livetin) (Allergen Gal d 5)	113575	255 (244 6 1	2508.355
#2	APA1_CHICK Apolipoprotein A-I precursor (Apo-AI)	113990	94 (84 4 4 2	904.4369
#3	FIBA_CHICK Fibrinogen alpha/alpha-E chain precursor [Contains: Fibrinop	1706798	40 (37 1 1 0	386.3528
#4	Mol_id: 1; Molecule: Ovotransferrin; Chain: Null; Synonym: Conalbumin; H	1127086	34 (30 3 0 1	328.2493
#5	PB2 protein [Influenza A virus (A/chicken/Taiwan/7-5/99(H6N1))]	9954387	28 (0 22 3 2	204.7303
#6	C Chain C, Crystal Structure Of Native Chicken Fibrinogen	8569623	15 (15 0 0 0	150.3351
#7	l50711 complement C3 precursor - chicken	2118406	11 (9 2 0 0 0	106.3393
#8	TTHY_CHICK Transthyretin precursor (Prealbumin) (TBPA)	136463	10 (10 0 0 0	100.3767
#9	TIM2_CHICK Metalloproteinase inhibitor 2 precursor (TIMP-2) (Tissue inhib	3122960	13 (0 11 1 0	96.44643
#10	AAA6469	3645997	10 (9 0 1 0 0	96.43947
#11	MYH9_CHICK Myosin heavy chain, nonmuscle (Cellular myosin heavy chain	127759	14 (5 0 5 3 1	94.4
#12	S19188 myosin-V - chicken	104779	13 (4 3 3 2 1	92.33327
#13	FIBB_CHICK Fibrinogen beta chain precursor [Contains: Fibrinopeptide B]		9 (8 1 0 0 0)	88.22259
#14	A Chain A, Crystal Structure Of Wild Type Turkey Delta 1 Crystallin (Fye		12 (0 2 10 0	76.49026
#15	Hyperion prot How do I turn this laund	ny liot	8 (6 1 0 1 0)	72.40443
#16	Hyperion prot TOW QO I LUITI LITS IAUTIQ	ly 11St	11 (0 5 3 3 0	70.23222
#17	witronectin IG		7 (7 0 0 0 0)	70.21583
#18	CA36_CHICK into a useful biologic	al	10 (3 2 3 1 1	70.21163
#19	paired-type h		11 (0 4 5 1 1	68.6834
#20	I51298 transfi TP2A CHICK mode?		7 (6 1 0 0 0)	68.24525
#21	TP2A_CHICK		7 (5 2 0 0 0)	66.27445
#22	ITA6_CHICK Integrin alpha-6 precursor (VLA-6)	124948	12 (0 5 1 4 2	66.25118
#23	glucose regulated thiol oxidoreductase protein precursor [Gallus gallus]	22651801	11 (1 3 4 0 3	64.65224
#24	spectrin alpha chain [Gallus gallus] rsor	1334744	9 (3 2 1 2 1)	62.33337
#25	ATP-binding cassette transporter 1 [Gallus gallus]	18028983	9 (2 3 2 1 1)	62.31025
#26	cone-type transducin alpha subunit [Gallus gallus]	11066401	8 (1 6 0 1 0)	62.15586
#27	condensin complex subunit [Gallus gallus] s] hick	26801168	12 (0 2 4 4 2	60.69801
#28	BA2B_CHICK Bromodomain adjacent to zinc finger domain 2B (Extracellu	22653663	8 (3 1 3 1 0)	60.14009
#29	ryanodine receptor type 3 [Gallus gallus]	1212912	9 (0 5 2 1 1)	58.38206
#30	type I polyketide synthase AVES 4 [Streptomyces avermitilis MA-4680]	29827484	7 (2 4 1 0 0)	58.30331
#31	structural muscle protein titin [Gallus gallus] n k	7024535	9 (0 5 2 0 2)	56.29744
#32	breast cancer susceptibility protein [Gallus gallus]	19568157	7 (4 1 1 0 1)	56.23917
#33	FAS_CHICK Fatty acid synthase [Includes: EC 2.3.1.38; EC 2.3.1.39; EC	1345958	8 (1 4 1 1 1)	54.35799

Why I started using the GO.

- Need to know the function of all 3,602 chicken proteins.
- Google searches for the proteins name and "function" continually found the GO pages.
- Only 8% of my chicken proteins had any functional GO annotation (even in our wellstudied model system).
- Contacted GO to get more GO annotations...



Fiona M. McCarthy, Amanda M. Cooksey, G. Todd Pharr and Shane C. Burgess

College of Veterinary Medicine, Mississippi State University

Why I became a GO annotator...

- Chicken GO annotations provided via EBI-GOA Project
- No dedicated effort to annotate chicken
- The only way to get more GO annotation is for me to add it!

GO Training at MGI, Maine

AgBase

Animals Plants Microbes Parasites

> Search Text BLAST

Taxonomy Gene Ontology Proteogenomics

Tools

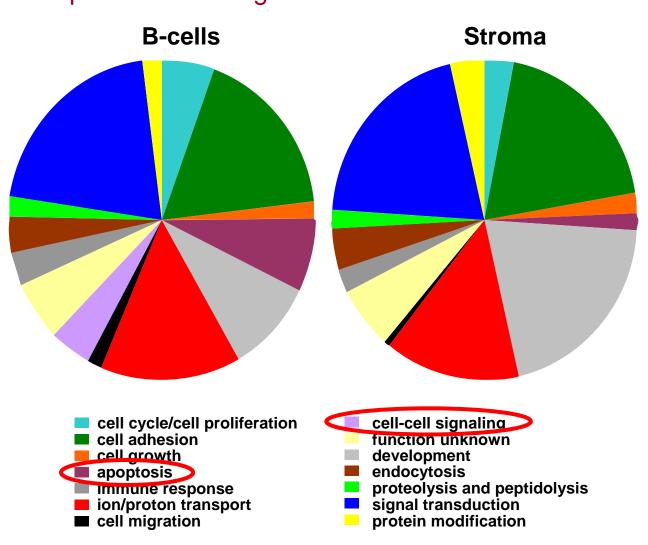
Downloads & Statistics

Welcome to AgBase

AgBase is a curated, open-source, web-accessible resource for functional analysis of agricultural plant and animal gene products.

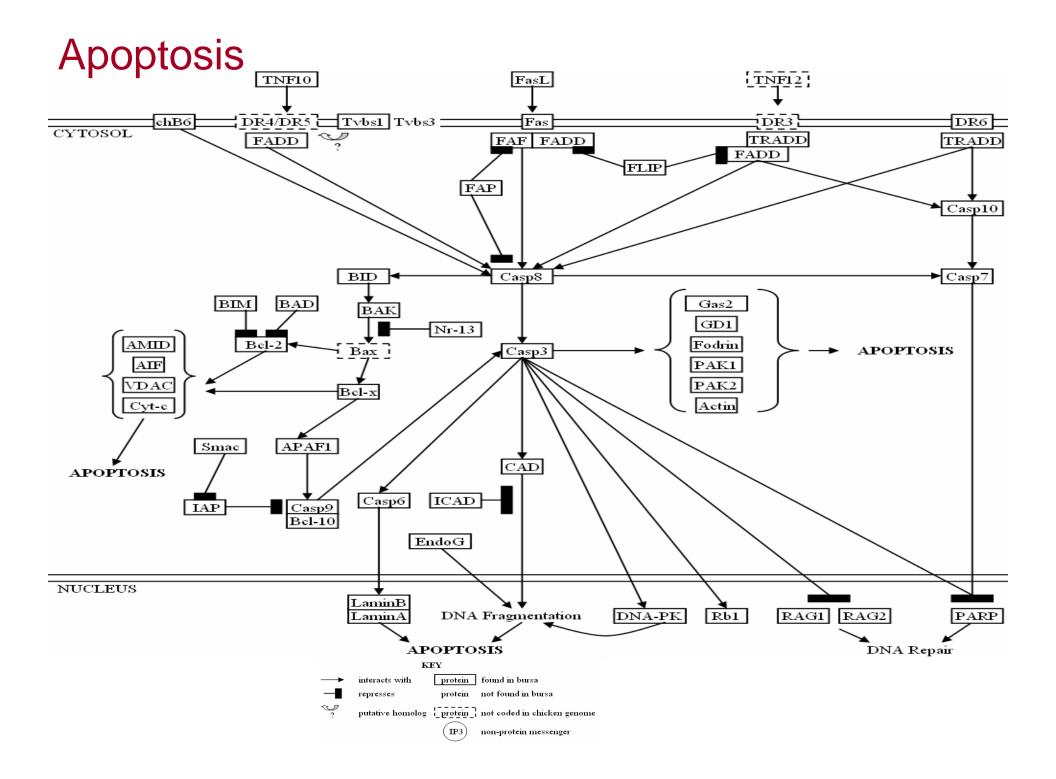
Read more...

AgBase also provides tools for proteomic analysis and functional analysis using the GO.


Search AgBase

Select AgBase Dat	AgBase	٧	
Browse By:	<u></u>		
>Select name type	٧		
Enter Multiple Que	eries (ne	w line sep	arate
Enter Multiple Que	eries (ne	w line sep	arate

Modeling a whole organ using proteomics: The avian bursa of Fabricius


Fiona M. McCarthy, Dr. 1*, Amanda M. Cooksey 1, Nan Wang 2, Susan M. Bridges 2, G. Todd Pharr 1, Shane C. Burgess 1

Comparison of Biological Process: Membrane Proteins

¹Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA

²Department of Computer Science and Engineering, College of Engineering, Mississippi State, MS, USA

Case Study: Chicken Microarrays

FAQ: "Not all of my genes/proteins have GO annotation, how do I get more?"

- 1. Tools for adding GO based on homology.
- 2. Getting involved: community annotation.

- ☆
- 4
- Gene Ontology Tools
- · Trait itcywola blowsel
- Tk-G0

Annotation tools

Tools for annotating genes or gene products using GO

- GeneTools
- GOanna
- GoAnnotator
- GoFigure
- GoPubMed
- GOtcha
- HT-GO-FAT
- InGOt (proprietary)
- JAFA
- Manatee
- PubSearch

Tools for adding GO

AgBase

[Version: 1.02]

Animals Plants Microbes Parasites

Search Text BLAST Taxonomy Gene Ontology Proteogenomics

Tools

Downloads & Statistics

Journal Database

Educational Resources

AgBase Tools

AgBase provides tools designed to assist with the analysis of proteomics data and tools to evaluate experimental datasets using the GO.

Proteomics Analysis

ProtIDer (ESTPlus, PIE Tool) [Available on request]

Enhances proteomics based on EST or EST assemblies by generating databases of matching highly homologous proteins.

The Proteogenomic Pipeline [Available on request]

The Proteogenomic Pipeline provides experimentally-based structural annotations at a complete genome level.

Functional Analysis Using GO

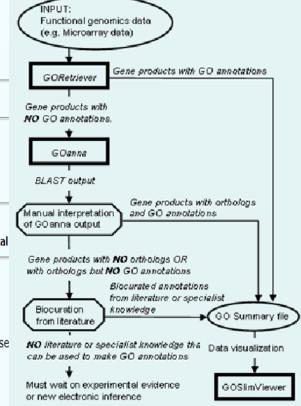
GOProfiler

Summarizes existing GO annotations in AgBase.

GO Annotation Pipeline

These tools may be used independently, or as a pipeline (shown below) to provide GO annotations for experimental

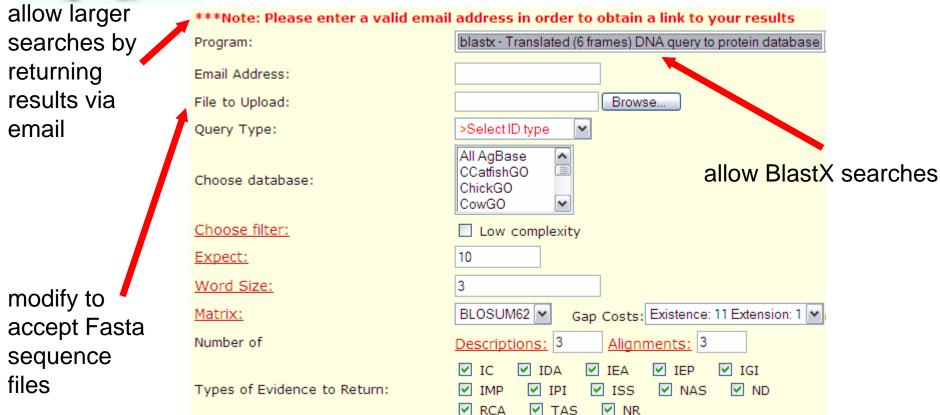
GORetriever


Returns AgBase GO annotations for a list of proteins IDs.

<u>GOanna</u>

Allows users to submit a list of protein or nucleotide IDs or a FASTA file containing sequences and returns AgBase

GoSlimViewer


Summarizes GO annotations for datasets using a GO Slim.

Case Study: Chicken Microarrays

modify GOanna tool to assist with GO annotation of microarrays:

	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R
1	Contig_11378.1	Chick																
2		EMP2_HL	Epithelial r	246	1.00E-64													
3			UniProt	P54851	EMP2_HU	JMAN	GO:00082	PMID:899	(TAS		Р	cell prolife	ration	IP1000088	protein	9606	9/4/2003	PINC
4			UniProt	P54851	EMP2_HU	JMAN	GO:00160	PMID:888	∠TAS		С	integral to	membrane	IP1000088	protein	9606	9/4/2003	PINC
5		Q66HH2_	F Epithelial r	232	3.00E-60)												
6		Q548I4_N	1 Epithelial r	231	6.00E-60)												
7	Contig_12369.1	Chick																
8		Q8N828_H	CDNA FL	98	6.00E-20)												
9		Q6JQN1_	FACAD 10	98	6.00E-20)												
10		Q8NAP2_	CDNA FL	96	2.00E-19)			,	4			\					
11	Contig_3035.2	Chick						re [·]	torma	at ou	tput	to a (jE()	style				
12		COMD9_H	COMM doi	275	3.00E-73	3								_				
13		Q3MIE7_F	COMM doi	274	4.00E-73	3												
14		Q53FR9_I	COMM doi	272	2.00E-72	2												
15	Contig_145.1	Chick																
16		ERP29 C	l Endoplasn	447	e-125													

	Α	В	C	D	E	F	G	H	1	J	K	L	М	N	
1	EST Contigs	Matchin	g Gene Products		BLA	ST Statistics			O Cellular	Compone	iO Molecul	lar Functio	O Biologic	al Preoces	
2	Sequence ID	UniProtKB Accession	UniProt Name	query length	match length	alignment	Score	Eval	GO ID	GO Term	GO ID	GO Term	GO ID	GO Term I	۱ar
3	Contig_11378.1	P54851	Epithelial membrane protein 2	2055	167	118/168 (70%)	246	1.00E-64	GO:00160:	integral to	membrane		GO:00082	cell prolifer	atic
4	Contig_145.1	P81628	Endoplasmic reticulum protein E	2026	228	226/228 (99%)	447	e-125	GO:00057	endoplasm	ic reticulur	n; endoplas	mic reticulu	um	
5	Contig_145.1	P30040	Endoplasmic reticulum protein E	2026	261	181/259 (69%)	363	1.00E-99	GO:00057	endoplasm	GO:00037	protein dis	GO:00064	protein fold	ing
_															

Summary of GO Annotations of Del-Mar 14	K Array	
Total Contigs on Del-Mar 14K Array	14,049	% of Contigs with Protein ID/GO Terms
Number of Contigs with Protein ID	9,587	68.23973
Number of Contigs with CC GO Terms	1982	14.10777
Number of Contigs with MF GO Terms	2576	18.33582
Number of Contigs with BP GO Terms	2331	16.59193
Number of Singlets on Del-Mar 14K Array	3034	% of singlets with Protein ID/GO Terms
Number of Singlets with Protein ID	1400	46.1437
Number of Singlets with CC GO Terms	354	11.66777
Number of Singlets with MF GO Terms	263	8.668425
Number of Singlets with BP GO Terms	297	9.789057

prioritise chicken protein matches with no annotation for future GO annotation

Adding GO via Homology

- Rapidly gives "breadth" of coverage.
- GO annotation based on homology adds general or "higher order" GO functions.
- GO annotation based on homology does not add direct functional annotation for the species of interest.
- Manual annotation of the literature provides detailed, species specific GO annotations.

AgBase

Animals Plants Microbes Parasites

Search Text BLAST Taxonomy Gene Ontology Proteogenomics

Downloads &

Statistics

Tools

Community Request and Submissions

Members of the agricultural research communities can submit their own GO annotations to AgBase or request that a particular protein be annotated by the AgBase curators. To request that a protein be annotated, fill out the **User Information**, the **Gene Product Information**, and the **Literature Evidence** sections below. If you would like to submit an annotation to the AgBase database, all three sections above and the **Optional Information** must be completed.

<u>User Information:</u>

Name:	
Email address/Login:	
Institution:	
Research Area:	

Community Annotation: bridging the gap between functional genomics and trained GO annotators.

Additional information regarding these fields can be found here.

* - Denotes a required field.

Gene Product Information:

*Database:

>Please select

e select

Database Copyright @ Mississippi State University, Permission to use the information contained in this database was given by the researchers/institutes who contributed or published the information. Users of the databas are solely responsible for compliance with any copyright restrictions, including those applying to the author abstracts. Documents from this server are provided "AS-IS" without any warranty, expressed or implied.

You are AgBase visitor no. 8725

Your Species and the GO

FAQ: "Why isn't my species represented in the GO?"

- 1. Finding out more about your species in the GO.
- 2. GO educational resources.
- 3. GO annotation training.

Your species & the GO

Species directed GO annotation efforts:

AgBase

[Version: 1.02]

Animals
Plants
Microbes
Parasites

Search Text BLAST Taxonomy

Gene Ontology

Proteogenomics

Tools

Downloads & Statistics

Welcome to AgBase

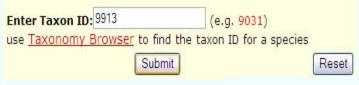
AgBase is a curated, open-source, web-accessible resource for functional analysis of agricultural plant and animal gene products.

Read more...

AgBase also provides tools for proteomic analysis and functional analysis using the GO.

Search AgBase

Select AgBase Database:	AgBase	~
Browse By:		
>Select name type		
Enter Multiple Queries (ne	w line sep	arate
^		


AgBase
[Version: 1.02]

Animals
Plants
Microbes
Parasites

Search

GOProfiler

GOProfiler provides a summary of the GO annotations available in AgBase. The user provides a species (taxon id) and GOProfiler displays the number of GO associations and the number of annotated proteins for that species. The results are listed by evidence code and a separate list of unannotated proteins is also provided.

Our AgBase GoProfiler Summary Page for taxonomy: 9913

GOProfiler:

Text

BLAST

Taxonomy

Gene Ontology Proteogenomics

summarizes the number of GO annotations available based on GO evidence codes.

Number Of Annotated proteins	7445
Number Of assigned annotions	40422
Number Of unannoted proteins	<u>2509</u>

Evience Code	Number of Annotations	Number of Proteins
IC	<u>10</u>	9
IDA	<u>148</u>	58
IEA	<u>36020</u>	7400
IEP	<u>3</u>	3
IMP	<u>11</u>	7
IPI	<u>56</u>	35
IPI	<u>56</u>	35

GO Educational Resources

AgBase Educational Resources

The following material has been prepared by members of AgBase and includes seminars and tutorials about GO annotation. They are presented here to encourage agricultural researchers to learn more about how to use the GO and its associated computational tools to add value to their functional genomics datasets.

We also suggest that users interested in GO visit the GO Consortium Homepage Teaching Resources.

- "MSU GO Annotation class notes" (Fall 2005)
- "AgBase and the Ruminant Genomes: GOing towards greener pastures" (PAGXIV 2006)
- "ChickGO Takes Flight" (2005 GO User Meeting)
- "The AgBase GO Annotation Tools" (2005 GO User Meeting)
- "AgBase GO Toolkit: A Gene Ontology Annotation Toolkit for Large Scale Protein Datasets" (2005 Biocurator Meeting)

the Gene Ontology gene or protein name go!

FAQ **Downloads**Ontologies Annotations

Open menus

Home

Annotations
Database
Mappings to GO
Teaching Resources

Tools

Documentation

Monthly Reports

About GO

GO Teaching Resources

The following posters, tutorials and presentations have been prepared and used by members of the GO Consortium to educate and disseminate information about the GO project. Please note that these items were written for specific events, and have not subsequently been updated. Some of the material in the older files may not be representative of the current state of the project. Please check the dates carefully and choose the newest relevant file.

Presentations Tutorials

Posters

Sample Annotation Sets

GO Annotation Training

 AgBase: 2 week intensive GO annotation training with MGI mentor group

- GO now runs regular GO annotation training courses
 - focus on manual GO annotations
 - 2007: Annotation Training Camp at TIGR

With Thanks To:

MGT GO Consortium Member mentor

MGI: Judith Blake, David Hill, Mary Dolan, Harold Drabkin

GOA: Evelyn Camon, Dan Barrell

GO Editorial Office: Jen Clark, Midori Harris

dictyBase: Rex Chisholm, Eric Just

Plant Associated Microbe Gene Ontology (PAMGO) / Institute of Digital Biology - AgBase.

Booth 206