DAG-Edit & OBO

Come on a magical journey of discovery with me,
and learn all the new things DAG-Edit can do
now that we have the OBO format...




The Wonderful World of Relationship
Types

OBO has imbued relationship types with all kinds
of new and amazing powers.




e Relationship types now have a “range” attribute.

— The range 1s a term. Only terms that are subclasses of
the range term can be the target of a term relationship

type.




* So, let's say we have the
relationship type

Legal:
has_sequence. The range of S

B & dna_segquence

has_sequence 1s sequence. PRI dna delation

That means that a

relationship with the type llegal:
has_sequence can only have g @ monkey

parents that are subclasses [PEETPTIN dna_deletion
of the term sequence (like

rna_sequence,

dna_sequence, etc).




This gives us a lot more ability to make sure the
ontologies are consistent. This becomes really

important when you're dealing with an ontology
with a lot of relationship types (like the Sequence
Ontology, or an anatomy, or the Phenotype
Ontology, or any ontology with “cross
products™).




* Relationship types also can specify a domain.

— The domain 1s a term. Only terms that are subclasses
of the domain term can be the source of a term
relationship type.




* So, let's say we have the
relationship type has_color.
The domain of has color 1s
visible_object. That means
that a relationship with the
type has_color can only
have children that are 5@ black
subclasses of the term [PPRER dirminished 9th chord
visible_object (like chicken,
rock, leonardo_da_vinci,
etc).

Legal:

EH© black
[PPRRE Linluchey cat

Illegal:




Is Cyclic

It 1s possible to say whether or not a relationship
type can be used to create a cycle. It 1s illegal to
create a cycle of relationships out of a
relationship type that is not marked “is cyclic”.

* However, it 1s still legal to create cycles using
multiple acyclic relationship types in
combination.




Is Transitive

* Transitive relationship types are relationship
types such that:

— If A has relationship X to B, and B has relationship X
to C, by definition, A has relationship X to C.

— 1s_a and part_of are transitive, which 1s why the true
path rule works.




Is Symmetric

 Symmetric relationship types are relationship
types such that:

— If A has relationship X to B, B has relationship X to
A.

— Precise identity relationships (like mathematical
equality) are symmetric (if A=B, B=A). 1s_a and
part_of are not symmetric.




Namespaces

* It 1s now possible to assign terms (and term
relationships) to a “namespace”.

— Other things, like categories and dbxrefs, will be
assignable to namespaces someday.




Namespaces

* A namespace can be thought of in two ways

— A namespace refers to the logical ontology to which a
term belongs, regardless of where the ontology 1s
stored. Namespaces let us know which ontology
obsolete terms belong to, since we don't have any
parentage info.

— A namespace refers to the file in which a term (or
relationship, or whatever) should be stored. The OBO
save mechanism lets you save your session into
several files based on namespaces.




Namespaces

* Why bother with namespaces instead of assigning
file names?

— Terms might have been loaded from a source that
doesn't have a proper name, like a database, so we use
a more abstract designation

— Terms 1n different files might still belong to the same
namespace (if, for example, you created a sub-
ontology in a special file, and wanted to merge 1t with
another ontology).




Relationship Namespaces

* A relationship can be marked with a different
namespace than 1t's parent or child.

— This can be used to create a distinct file for
relationship types that don't belong in an existing
ontology. For example, you could a bunch of links
between two ontologies, you could keep those links in

a third file by giving them a different namespace than
the other two ontologies.

— Relationships with no namespace are assigned to the
namespace of the child term.




Inverse Necessity

* It 1s possible to mark a relationship as necessarily

— A necessarily true relationship must always be true.
(1e human_finger 1s necessarily part_of human_hand,
but shoe 1s not necessarily part_of casual_outfit,
because a shoe 1s sometimes part_of a casual outfit,
but someone might go barefoot).




Inverse Necessity

* It 1s possible to mark a the inverse of a
relationship as necessarily true. A relationship
may be inverse necessarily true with being
necessarily true

— For example: The relationship wheel part_of car is
inverse necessarily true. Something with no wheels 1s
not a car, but a wheel can still be a wheel without
being part of a car.




Completeness

* A “complete” term specification 1s one where
anything that matches the term specification 1s by
definition an instance of that term.




Example: An Incomplete Spec

The following term specification of manx_cat 1s

incomplete:

O cat

& manx _cat
2 tailless _animal
) mian> _cat

* Because being a tailless_animal and being a cat
does not automatically make something a
manx_cat (it might be cat_with_severed_tail).




Example: An Complete Spec

* The following term specification of unlucky_cat is complete:

B & unlucky_animal

@ unlucky_cat
B & black

[PETAT il U ckey_cat
B & cat

© unlucky_cat
* The relationships has_color black and is_a cat are enough to

constitute a complete definition, because anything that is black
and a cat 1s an unlucky cat.

* A complete term spec can contain relationships that don't
contribute to the completeness (like is_a unlucky_animal).




The Parent Plugin

* There's a single easy place to set all these
relationship attributes: The Parent Plugin.




Fun with Obsolete Terms

* It 1s now possible to create a link between an
obsolete term and the terms that should be used to
replace it.




New Built-In Relationship Types

* disjoint_from

inverse_of




disjoint_{rom

* A 1sdisjoint_from B 1f no instance of A can ever

be an instance of B.
— smart_guy 1s disjoint_from dumb_guy
— visible_object 1s disjoint_{from abstract_concept

— disjoint_from applies to subclasses of the specified
terms. So if george_w 1s_a dumb_guy, smart_guy 1s
disjoint_from george_w




inverse of

* inverse_of applies only to relationship types. It's
easier to explain with examples:
— part_of 1s the inverse_of has_part
— 1s_a 18 the inverse_of has_subclass

— has_color 1s the inverse_of is_color_of

* inverse_of 1s symmetrical. If A 1s the inverse of
B, B 1s the inverse_of A.




Conclusion: How does this help us

All of these OBO-centric concepts are already
present in the GO, they just aren't explicitly
encoded. Hence the ongoing discussions about
whether part_of means necessarily part of;
sometimes 1t does, sometimes it doesn't, we just
had no way of making it clear).

e With this additional information, we can now

map to OWL and interact with reasoners much
more effectively.




